131 research outputs found

    Nanowrinkled Carbon Aerogels Embedded with FeN x Sites as Effective Oxygen Electrodes for Rechargeable Zinc-Air Battery.

    Get PDF
    Rational design of single-metal atom sites in carbon substrates by a flexible strategy is highly desired for the preparation of high-performance catalysts for metal-air batteries. In this study, biomass hydrogel reactors are utilized as structural templates to prepare carbon aerogels embedded with single iron atoms by controlled pyrolysis. The tortuous and interlaced hydrogel chains lead to the formation of abundant nanowrinkles in the porous carbon aerogels, and single iron atoms are dispersed and stabilized within the defective carbon skeletons. X-ray absorption spectroscopy measurements indicate that the iron centers are mostly involved in the coordination structure of FeN4, with a minor fraction (ca. 1/5) in the form of FeN3C. First-principles calculations show that the FeN x sites in the Stone-Wales configurations induced by the nanowrinkles of the hierarchically porous carbon aerogels show a much lower free energy than the normal counterparts. The resulting iron and nitrogen-codoped carbon aerogels exhibit excellent and reversible oxygen electrocatalytic activity, and can be used as bifunctional cathode catalysts in rechargeable Zn-air batteries, with a performance even better than that based on commercial Pt/C and RuO2 catalysts. Results from this study highlight the significance of structural distortions of the metal sites in carbon matrices in the design and engineering of highly active single-atom catalysts

    Nickel hydroxide-supported ru single atoms and Pd nanoclusters for enhanced electrocatalytic hydrogen evolution and ethanol oxidation

    Get PDF
    The rational fabrication of Pt-free catalysts for driving the development of practical applications in alkaline water electrolysis and fuel cells is promising but challenging. Herein, a promising approach is outlined for the rational design of multimetallic catalysts comprising multiple active sites including Pd nanoclusters and Ru single atoms anchored at the defective sites of Ni(OH)2 to simultaneously enhance hydrogen evolution reactions (HER) and ethanol oxidation reactions (EOR). Remarkably, Pd12Ru3/Ni(OH)2/C exhibits a remarkably reduced HER overpotential (16.1 mV@10 mA cm−2 with a Tafel slope of 21.8 mV dec−1) as compared to commercial 20 wt.% Pt/C (26.0 mV@10 mA cm−2, 32.5 mV dec−1). More importantly, Pd12Ru3/Ni(OH)2/C possesses a self-optimized overpotential to 12.5 mV@10 mA cm−2 after 20 000 cycles stability test while a significantly decreased performance for commercial 20wt.% Pt/C (64.5 mV@10 mA cm−2 after 5000 cycles). The mass activity of Pd12Ru3/Ni(OH)2/C for the EOR is up to 3.724 A mgPdRu−1, ≈20 times higher than that of commercial Pd/C. Electrochemical in situ Fourier transform infrared measurements confirm the enhanced CO2 selectivity of Pd12Ru3/Ni(OH)2/C while synergistic and electronic effects of adjacent Ru, Pd, and OHad adsorption on Ni(OH)2 at low potential play a key role during EOR

    RhoGDIβ-induced hypertrophic growth in H9c2 cells is negatively regulated by ZAK

    Get PDF
    We found that overexpression of RhoGDIβ, a Rho GDP dissociation inhibitor, induced hypertrophic growth and suppressed cell cycle progression in a cultured cardiomyoblast cell line. Knockdown of RhoGDIβ expression by RNA interference blocked hypertrophic growth. We further demonstrated that RhoGDIβ physically interacts with ZAK and is phosphorylated by ZAK in vitro, and this phosphorylation negatively regulates RhoGDIβ functions. Moreover, the ZAK-RhoGDIβ interaction may maintain ZAK in an inactive hypophosphorylated form. These two proteins could negatively regulate one another such that ZAK suppresses RhoGDIβ functions through phosphorylation and RhoGDIβ counteracts the effects of ZAK by physical interaction. Knockdown of ZAK expression in ZAK- and RhoGDIβ-expressing cells by ZAK-specific RNA interference restored the full functions of RhoGDIβ

    ZAK negatively regulates RhoGDIβ-induced Rac1-mediated hypertrophic growth and cell migration

    Get PDF
    RhoGDIβ, a Rho GDP dissociation inhibitor, induced hypertrophic growth and cell migration in a cultured cardiomyoblast cell line, H9c2. We demonstrated that RhoGDIβ plays a previously undefined role in regulating Rac1 expression through transcription to induce hypertrophic growth and cell migration and that these functions are blocked by the expression of a dominant-negative form of Rac1. We also demonstrated that knockdown of RhoGDIβ expression by RNA interference blocked RhoGDIβ-induced Rac1 expression and cell migration. We demonstrated that the co-expression of ZAK and RhoGDIβ in cells resulted in an inhibition in the activity of ZAK to induce ANF expression. Knockdown of ZAK expression in ZAK-RhoGDIβ-expressing cells by ZAK-specific RNA interference restored the activities of RhoGDIβ

    Intramuscular electroporation with the pro-opiomelanocortin gene in rat adjuvant arthritis

    Get PDF
    Endogenous opioid peptides have an essential role in the intrinsic modulation and control of inflammatory pain, which could be therapeutically useful. In this study, we established a muscular electroporation method for the gene transfer of pro-opiomelanocortin (POMC) in vivo and investigated its effect on inflammatory pain in a rat model of rheumatoid arthritis. The gene encoding human POMC was inserted into a modified pCMV plasmid, and 0–200 μg of the plasmid-POMC DNA construct was transferred into the tibialis anterior muscle of rats treated with complete Freund's adjuvant (CFA) with or without POMC gene transfer by the electroporation method. The safety and efficiency of the gene transfer was assessed with the following parameters: thermal hyperalgesia, serum adrenocorticotropic hormone (ACTH) and endorphin levels, paw swelling and muscle endorphin levels at 1, 2 and 3 weeks after electroporation. Serum ACTH and endorphin levels of the group into which the gene encoding POMC had been transferred were increased to about 13–14-fold those of the normal control. These levels peaked 1 week after electroporation and significantly decreased 2 weeks after electroporation. Rats that had received the gene encoding POMC had less thermal hypersensitivity and paw swelling than the non-gene-transferred group at days 3, 5 and 7 after injection with CFA. Our promising results showed that transfer of the gene encoding POMC by electroporation is a new and effective method for its expression in vivo, and the analgesic effects of POMC cDNA with electroporation in a rat model of rheumatoid arthritis are reversed by naloxone

    Do beta-adrenergic blocking agents increase asthma exacerbation? A network meta-analysis of randomized controlled trials

    Get PDF
    Beta-adrenergic blocking agents (abbreviated as beta-blockers) have been used for treating various cardiovascular diseases. However, the potential for asthma exacerbation is one of the major adverse effects of beta-blockers. This study aimed to compare the level of risk for an asthma attack in patients receiving various beta-blockers. We searched for randomized controlled trials (RCTs) of either placebo-controlled or active-controlled design. The current network meta-analysis (NMA) was conducted under a frequentist model. The primary outcome was the incidence of asthmatic attack. A total of 24 RCTs were included. Overall NMA revealed that only oral timolol [risk ratio (RR) = 3.35 (95% confidence interval (CI) 1.04–10.85)] and infusion of propranolol [RR = 10.19 (95% CI 1.29–80.41)] were associated with significantly higher incidences of asthma attack than the placebo, whereas oral celiprolol [RR = 0.39 (95% CI 0.04–4.11)], oral celiprolol and propranolol [RR = 0.46 (95% CI 0.02–11.65)], oral bisoprolol [RR = 0.46 (95% CI 0.02–11.65)], oral atenolol [RR = 0.51 (95% CI 0.20–1.28)], infusion of practolol [RR = 0.80 (95% CI 0.03–25.14)], and infusion of sotalol [RR = 0.91 (95% CI 0.08–10.65)] were associated with relatively lower incidences of asthma attack than the placebo. In participants with a baseline asthma history, in addition to oral timolol and infusion of propranolol, oral labetalol, oxprenolol, propranolol, and metoprolol exhibited significantly higher incidences of asthma attack than did the placebo. In conclusion, oral timolol and infusion of propranolol were associated with a significantly higher risk of developing an asthma attack in patients, especially in those with a baseline asthma history, and should be avoided in patients who present a risk of asthma

    Women with endometriosis have higher comorbidities: Analysis of domestic data in Taiwan

    Get PDF
    AbstractEndometriosis, defined by the presence of viable extrauterine endometrial glands and stroma, can grow or bleed cyclically, and possesses characteristics including a destructive, invasive, and metastatic nature. Since endometriosis may result in pelvic inflammation, adhesion, chronic pain, and infertility, and can progress to biologically malignant tumors, it is a long-term major health issue in women of reproductive age. In this review, we analyze the Taiwan domestic research addressing associations between endometriosis and other diseases. Concerning malignant tumors, we identified four studies on the links between endometriosis and ovarian cancer, one on breast cancer, two on endometrial cancer, one on colorectal cancer, and one on other malignancies, as well as one on associations between endometriosis and irritable bowel syndrome, one on links with migraine headache, three on links with pelvic inflammatory diseases, four on links with infertility, four on links with obesity, four on links with chronic liver disease, four on links with rheumatoid arthritis, four on links with chronic renal disease, five on links with diabetes mellitus, and five on links with cardiovascular diseases (hypertension, hyperlipidemia, etc.). The data available to date support that women with endometriosis might be at risk of some chronic illnesses and certain malignancies, although we consider the evidence for some comorbidities to be of low quality, for example, the association between colon cancer and adenomyosis/endometriosis. We still believe that the risk of comorbidity might be higher in women with endometriosis than that we supposed before. More research is needed to determine whether women with endometriosis are really at risk of these comorbidities

    Interfacial Effects in Iron-Nickel Hydroxide–Platinum Nanoparticles Enhance Catalytic Oxidation

    Get PDF
    该研究工作是在郑南峰教授的领导下,由校内外、国内外多个课题组共同努力,历时三年完成。郑南峰、傅钢、陈明树等三个课题组紧密协作负责催化剂的合成、表征、性能测试以及催化机理研究;中国科学院物理研究所谷林研究员主要负责纳米颗粒的亚埃级球差校正高分辨透射电子显微研究;加拿大达尔豪斯大学化学系的张鹏教授课题组和台湾同步辐射研究中心李志甫研究员等参与催化剂的同步辐射X-射线吸收光谱研究。 该工作受到了国家自然科学基金委、科技部、厦门大学、固体表面物理化学国家重点实验室、能源材料化学协同创新中心以及醇醚酯化工清洁生产国家工程实验室的资助与支持。Hybrid metal nanoparticles can allow separate reaction steps to occur in close proximity at different metal sites and accelerate catalysis. We synthesized iron-nickel hydroxide–platinum (transition metal-OH-Pt) nanoparticles with diameters below 5 nanometers and showed that they are highly efficient for carbon monoxide (CO) oxidation catalysis at room temperature. We characterized the composition and structure of the transition metal–OH-Pt interface and showed that Ni2+ plays a key role in stabilizing the interface against dehydration. Density functional theory and isotope-labeling experiments revealed that the OH groups at the Fe3+-OH-Pt interfaces readily react with CO adsorbed nearby to directly yield carbon dioxide (CO2) and simultaneously produce coordinatively unsaturated Fe sites for O2 activation. The oxide-supported PtFeNi nanocatalyst rapidly and fully removed CO from humid air without decay in activity for 1 month
    corecore